亲,双击屏幕即可自动滚动
第469节
    可问题是柯南星的距离在那边呢:
    如果伴星很小,那么它无论如何都不可能会被黑白相机拍摄到。
    只有体积达到一定规模——比如直径是主星的三分之一甚至二分之一,它才可能会被记录下来。
    可一旦伴星达到了这种量级。
    那么它的升交点经度最少都在200以上,轨道倾角也不可能低于0.050。
    这样一来。
    一个新问题就出现了:
    有这么一颗巨大星体的存在,为什么他们此前计算出的数值会是正确的?
    举个例子。
    你的面前有一片沙地,已知某个50斤的铁球从天空中落下。
    你通过推导确定了它的落地速度,又计算了沙子阻力的影响,最后确定铁球会停止在地下一米的地方。
    接着你拿铲子挖到了地下一米。
    果不其然,你顺利的找到了这枚铁球。
    一切看似没问题,可以开香槟了对吧?
    可你在称重量的时候忽然发现,这枚铁球它不是五十斤,而tmd是七十斤!
    落地速度不变,沙子的阻力不变。
    根据1/2mv^2计算,七十斤铁球和五十斤铁球显然不可能会停滞在一处区域。
    但实际结果却摆在那边:
    它就是出现在了地下一米的位置,顶多就是几毫米的误差罢了。
    并且与举例不同,行星的位置是不会骗人的,它就挂在那儿呢。
    那么如此想来,就只剩下一个可能了:
    有某个未知的力量在铁球落地后,将它的动能减少到了五十斤的量级。
    随后高斯又想到了什么,只见他重新拿起纸和笔,飞快的在桌上演算了起来。
    过了十多分钟。
    高斯深呼出一口气,表情若有所思:
    “果然,无论是柯南星单体,还是算上伴星的影响,天王星的轨道依旧存在一些问题。”
    想到这里。
    他不由转过头,一脸凝重的看向徐云,说道:
    “罗峰同学,你说是不是有这样一种可能呢……”
    “就是在更遥远的某个地方,在极尽远的星空深处。”
    “还有一颗巨大的、未被发现的行星,正在对柯南星与它的伴星施加着引力……”
    听闻此言。
    徐云顿时瞳孔骤缩!
    果然。
    意外……还是发生了。
    过了几秒钟。
    他深吸一口气,没有回答高斯的问题。
    而是从身上取下斧头,塞进嘴里啃了起来。
    嗯。
    还好老子机智,找糕点铺订做了个斧头模样的面包,味道还不错。
    ……
    第284章 向星空发出的挑战书!(上)
    此前曾经介绍过。
    在原本历史中。
    1781年的时候。
    威廉·赫歇尔首次发现了天王星。
    但因为它的轨道不符合万有引力定律,并且存在较大的误差。
    所以过了一些年,勒维耶又独立计算出了海王星的存在。
    可很快,天文界就又发现了一个问题:
    海王星依旧只能解释天王星70%左右的轨道异常。
    所以人们认为海王星的外轨道上,应该还有一颗行星存在。
    最终汤博在1930年发现了它的存在,也就是赫赫有名的冥王星。
    实话实说。
    一开始,冥王星在数据上确实填补了剩下30%的空缺。
    于是天文学界就开始开香槟了,并且一开就是40多年。
    但随着詹姆斯·克里斯蒂在1978年6月22日发现了冥卫一,天文学家们突然惊讶的发现……
    自己香槟开的貌似有点早,半场三球领先居然被人翻盘了?!
    国际天文联合会于1978年7月7日,正式向世界宣布克里斯蒂的发现,并于1985年将冥卫一命名为卡戎。
    同时值得一提的是。
    1978年虽然已经出现了射电望远镜,但詹姆斯·克里斯蒂使用的nofs依旧是标准的反射式望远镜。
    并且它的口径只有61英寸,也就是1.55米。
    上一章便提及过。
    以冥王星与地球的距离来说。
    能被用非射电类天文望远镜观测到的卫星,它的体积一定不会小到哪里去。
    最终天文界通过1985年至1990年之间冥王星和卡戎相互掩星和凌星的现象计算,确定卡戎了的直径大约是冥王星的一半。
    这两颗天体互相潮汐锁定,形成了一个双矮行星系统。
    也就是说。
    它们的质心都位于冥王星以外。
    这就相当于两个天体形成了一个概念上的‘组合星球’,这个组合星球施加的引力就和天王星的轨道对不上了——具体情况可以再去看看此前举过的那个铁球掉入沙地的例子。
    换而言之。
    冥王星的发现其实是有些误打误撞的数学巧合……
    于是受此影响,天文学家们才会展开对柯伊伯带天体的观察。
    再然后的事儿,就是sedna,2004 vn112,2007 tg422,2010 gb174,2012 vp113,2013 rfs99这六颗天体的发现了。
    它们的轨道有些某种微妙重合,高度疑似受到了某些外力的牵引。
    于是让天文界做出了在奥尔特星云一带,可能有一个之前未被发现的巨行星或者橘子大小黑洞的猜测。
    当然了。
    考虑到部分笨蛋……咳咳,鲜为人同学对于天体观测的知识储备远远不足的情况,这里再科普一个知识。
    那就是科学家们到底是怎么找寻系内行星的——这里的行星包括小行星。
    系外行星的观测方法此前已经介绍过了一次,此处就先省略。
    总之就是多普勒法和凌星法,另外还有微引力透镜和日冕仪等等。
    至于系内行星呢,方法很简单:
    大部分时候。
    恒星在空中基本不动,行星则会以一定的角速度变换位置。
    所以只要用图像自动搜索软件去对比某个周期——比如说半年或者一年内的图像,再筛选出角速度大于某个角秒的的星体就行了。
    一般来说。
    国内默认的数值是每小时1.3角秒以上。
    国际则是每小时1.5角秒。
    正因为对于这种方式的不了解,导致很多人都存在有一个思维误区:
    小行星和系内行星都是哈勃之类的望远镜拍到。
    比冥王星更远的系内天体,普通天文望远镜看不到它们。
    这个思维大错特错。
    举个例子。
    此前提及过阋神星,它距离地球足足有97个天文单位——一天文单位1.5亿公里,也就是冥王星的2.5倍。
    你猜猜迈克·布朗发现它的望远镜是什么规格?
    答案是1.2米的反射式望远镜,生产工艺是1780年就可以达到的水平——不过在光路上经过了一些改良。
    但这和工艺没关系,与设计思路有关。
    所以并不是说一颗行星距离地球很远,普通望远镜就观测不到它了。